WILSON DEVELOPMENTS INC.

FUNCTIONAL SERVICING REPORT

ECO PARKWAY DEVELOPMENT SITE TOWNSHIP OF SOUTHGATE

MARCH 2025

COBIDE Engineering Inc 517 10th Street Hanover, ON N4N 1R1 TEL: 519-506-5959 www.cobideeng.com

TABLE OF CONTENTS

1.	INTRODUCTION1
1.1	Location1
1.2	Development Proposal1
2.	WATER DISTRIBUTION SYSTEM 3
2.1	Design Criteria3
2.2	Water Consumption
2.3	Watermain Configuration3
3.	SANITARY SEWER SYSTEM 4
3.1	Design Criteria4
3.2	Design Flow Rates4
3.3	Sanitary Sewer Configuration4
4.	STORM SEWER SYSTEM5
4.1	Design Requirements5
4.2	SWM Facility Characteristics
4.2.1	SWM Facility Performance
4.3	Modelling Results6
4.4	Water Quaility7
5.	GRADING & EROSION AND SEDIMENT CONTROL
5.1	Construction Stage8

LIST OF TABLES

Table 1 - Proposed Water Demands	3
Table 4.1 – SWM Facility Geometry	5
Table 4.2 – SWM Facility Performance	6
Table 4.3 - Peak Flow Summary	6
Table 4.4 - Water Quality Requirements	7

LIST OF FIGURES

	ii
Figure 1 - Site Location Map	2
APPENDICES	
A – Drawings SP1 – Proposed Site Plan SS1 – Proposed Site Servicing Plan SWM1 – Pre Development Catchment Areas SWM 2 – Post Development Catchment Areas	
B – SWM Model Output	

1. INTRODUCTION

Cobide Engineering Inc. was retained by Wilson Developments to provide engineering services in support of a Site Plan Approval Application for Phase 1 of their proposed development in the village of Dundalk.

A copy of the proposed Site Plan has been included in Appendix A as Drawing SP1.

1.1 LOCATION

The proposed development is located Part of Lots 235 and 236, Former Township of Proton, Township of Southgate, County of Grey (described herein as the "site"). A Site Location Map is included as Figure 1. The subject property is approximately 4.85 hectares in area.

1.2 DEVELOPMENT PROPOSAL

The proposed development be completed in phases with Phase 1 consisting three (3) 1storage unit buildings, adjacent parking areas and an interior roadway. Future phases are unknown at this time and will be market dependent.

There will be a private road throughout the site providing access around the buildings. One entrance will be provided in the southwest corner of the property off Eco Parkway.

The Site Plan showing the overall configuration of the development has been included in Appendix A and noted as SP1.

The subject property is currently designated Industrial in the Township of Southgate's Official Plan and is zoned "M1 – General Industrial Zone" in the Township of Southgate's Zoning By-law. The subject property is within the Dundalk Settlement Boundary of the current Official Plan of the Township of Southgate and thus is intended for servicing from municipal water and municipal sewage.

The servicing of Phase 2 will be dealt with under a separate approval.

MAP SOURCE - MTO ROAD MAP

www.cobideeng.com

Client/Project ECO PARKWAY INDUSTRIAL DEVELOPMENT WILSON DEVELOPMENTS Township of Southgate, Ontario FUNCTIONAL SERVICING REPORT Figure No.

Figure No.

Title

REGIONAL LOCATION MAP

H:\Wilson\03710 — Eco Park Drive Industrial Site\Drawings\Working Drawings\03710 Regional Location — FSR.dwg Jun 07, 2022 — 9:53am COPYRIGHT © COBIDE ENGINEERING INC.

2. WATER DISTRIBUTION SYSTEM

The water distribution system will be sized based on the existing conditions at the connection to the municipal system and the proposed development's estimated demands which are determined by the Ministry of the Environment, Conservation and Parks (MECP) Design Guidelines for Drinking-Water Systems (2008).

2.1 DESIGN CRITERIA

The water distribution system will be design in accordance MOE guidelines which state the system *"should be designed to satisfy the greater of the following demands:*

- Maximum day demand plus fire flow; or,
- Peak hour demand

The maximum day demand and peak hour demand are based on the projected water consumption from the development and the fire flow is based on the type of the development.

The system will require modelling during the detailed design stage to ensure the water pressure throughout the system is within the requirements of the MECP.

Based on MECP guidelines, the minimum pressure at ground level at all points in the distribution system under maximum day demand plus fire flow conditions are to be 140 kPa (20 psi). The normal operation pressure should be between 350 kPa (50 psi) to 480 kPa (70 psi). There shall be no point in the distribution system that has a normal operating pressure of less than 275 kPa (40 psi). The maximum pressure in the pipe cannot exceed 700 kPa (100 psi).

2.2 WATER CONSUMPTION

The system will be designed based on a domestic water demand of 950 L/water closet/day (per OBC). The peaking factors will be derived from Table 3-1 of the MOE Design Guidelines. There will be a single water closet to be connected to the municipal system.

Table 1 below summarizes the projected maximum day and peak hour demands for the proposed development.

Table 1 - Proposed Water Demands							
Demand	Consumption (L/day)	Peaking Factor	Peak Rate (L/day)	Peak Rate (L/s)			
Maximum Day	950	2.75	2,613	0.03			
Peak Hour	950	4.0	3,800	0.04			

The system should be capable of supplying a minimum of 0.03 L/s of water to meet the peak hour demand of the proposed development.

2.3 WATERMAIN CONFIGURATION

A 25mm diameter water service will be connected to the municipal system at the proposed entrance into the development. There is currently a 150mm diameter watermain on the east side of Eco Parkway.

A drawing showing the proposed watermain distribution network has been included in Appendix A.

3. SANITARY SEWER SYSTEM

The sanitary servicing of the proposed development will be sized based on the existing conditions at the connection to the municipal sanitary sewer and the proposed development's estimated site demands which are determined by the MECP *Design Guidelines for Sewage Works (2008)*.

3.1 DESIGN CRITERIA

The sanitary sewer system will be designed in accordance MECP guidelines.

The sanitary sewer will be designed to convey the projected peak flow based on the site's occupancy load as well as extraneous flows.

3.2 DESIGN FLOW RATES

The sanitary sewer will be design flows are expected to be similar to the water usage. Therefore the peak flows are expected to be approximately 0.04 l/s.

3.3 SANITARY SEWER CONFIGURATION

There will be a single connection to the existing sanitary sewer. Based on the as built drawings received for the area, there are sanitary sewers north of the site which connect to the sanitary sewer system on Eco Parkway that will provide the outlet for the development.

The proposed service will be installed at 1%.

A drawing showing the proposed sanitary collection network has been included in Appendix A as Drawing 03710-SS1.

4. STORM SEWER SYSTEM

The subject property is currently vacant. The site is generally sloping from south to north, and west to east. There are no existing storm sewers on the property. The site mainly discharges into an existing ditch on the west side of Eco Parkway. Eco Parkway will be considered Discharge Point #1 for the purposes of this report.

The proposed development will be graded such that runoff is conveyed via swales and sheet flow to a new wet stormwater management pond in the northeast corner of the property. The outlet for the stormwater management pond will consist of a headwall, and a 300mm dia. storm sewer c/w an orifice, that will then discharge into the existing ditch on the west side of Eco Parkway.

The hydrologic modelling software PCSWMM Version 7.4.3240 Professional 2D was used to determine the pre and post-development peak flows of the 5 yr., 25 yr., and 100 yr. storm events (3 hour Chicago Storm Event, Dundalk IDF Parameters using MTO Curve Look-Up Tool).

The pre-development and post-development parameters and model outputs are contained in Appendix B.

For the purposes of this report, Discharge Point #1 will be the Eco-Park Way Ditch and Discharge Point #2 will be the lands to the north of the property.

4.1 DESIGN REQUIREMENTS

The intent of stormwater quantity control is to limit the flows under proposed conditions to existing levels or less to protect the downstream watercourses, infrastructure and properties.

Minor and Major flows from the majority of the development will be conveyed to the proposed stormwater management facility via swale throughout the developed area of the site and overland flow routes.

Due to the increase in impervious area, stormwater quantity control will be required for the site. The design of the stormwater management facility has assumed a free outlet from the pond.

4.2 SWM FACILITY CHARACTERISTICS

The stormwater management facility and outlet structure have been designed to control peak runoff rates as well as conform to MECP best practices.

In order to provide the above required volumes and discharges, the following SWM Facility geometry is being proposed:

SWM FACILITY	DETAILED DESIGN			
Side Slope	3:1 - 5:1			
SWM Facility Bottom	508.00 m			
Permanent Pool Elevation	509.00 m			
Top Elevation	510.00 m			
High Water Elevation	509.66 m			

The outlet configuration for the SWM Facility will be as follows:

- A 300mm diameter storm sewer with a 175mm orifice and an outlet elevation of 509.00 m;
- The outlet pipe will discharge into the roadside ditch on the west side of Eco Parkway

As seen by the proposed inverts, the proposed stormwater management facility will be constructed as a wet pond.

4.2.1 SWM FACILITY PERFORMANCE

Below is a summary of the hydraulic performance of the stormwater SWM Facility during the various storm events.

Table 4.2 – SWM Facility Performance							
RETURN PERIOD	ELEVATION (m)	STORAGE (m³)	DISCHARGE (I/s)				
5 Year	509.30	350	32.3				
25 Year	509.51	595	44.9				
100 Year	509.66	825	52.5				

4.3 MODELLING RESULTS

Based upon the above outlet structure, the following summarizes the pre-development and post development peak flows to the discharge point.

Table 4.3 - Peak Flow Summary						
	DISCHARGI (L/	E POINT #1 S)	DISCHARG (L	E POINT #2 /S)		
PERIOD	PRE	POST	PRE	POST		
5 Year	43.3	32.3	15.3	15.3		
25 Year	92.9	44.9	32.4	32.4		
100 Year	147.8	52.5	51.2	51.2		

As seen in the above table, the post development peak flows will be less than the pre development peak flows for all design storm events at Discharge Point #1. The peak flow is being conservatively controlled by the proposed stormwater management pond.

4.4 WATER QUAILITY

The MOE guidelines require that extended detention SWM facility's provide quality treatment of 40m³/ha and discharge it over a minimum of 24 hours. Having an extended detention component in the quality ponds provides settlement of suspended solids.

The following table summarizes the volume requirements based the MOE Guidelines.

Table 4.4 - Water Quality Requirements						
POST DEV DRAINAGE AREA (ha)	MOE VOLUME REQUIREMENT FOR NORMAL PROTECTION BASED ON 16.7% IMPERVIOUS (66.3 m ³ /ha)	MOE EXTENDED DETENTION (40 m³/ha)	PERMANENT POOL REQUIRED (m ³)			
3.12 ha	207 m ³	125 m ³	82 m ³			

The wetland facility will provide 1,395 m³ of active storage volume. The pond will provide a permanent pool volume of 450 m³. The pond has sufficient volume and size to meet water quality sizing requirements.

5. GRADING & EROSION AND SEDIMENT CONTROL

Erosion and sediment controls shall meet the requirements of the most recent version of the MECP *Stormwater Management Planning and Design Manual* at the time of construction.

5.1 CONSTRUCTION STAGE

Prior to the start of construction, appropriate sediment control facilities are to be in place. Following are details regarding erosion and sediment control that are to be implemented:

- Placement of heavy duty siltation fencing is required to be installed around the property boundary within the drainage corridor on the north and east side of the site to intercept sediment that could potentially be transported by sheet flow across the site. Light duty siltation fence will also be installed at any development grading limits where runoff may discharge from the site.
- It is proposed that the stormwater management pond be constructed first to act as a sedimentation basin.
- Placement of temporary straw check dams within the Eco Parkway drainage ditch downstream of the site;
- Installation of filter cloth under all new catchbasin grates until paving of the roadway is completed;
- Mud mats will be placed at construction access to keep public roadways free from debris during the construction period.
- Re-vegetate all disturbed areas after underground and surface works have been constructed.

Prior to removal of sediment control facilities, ensure that sediment that may have accumulated has been removed.

Once the area has been stabilized, the silt fencing can be removed.

Sincerely,

Cobide Engineering Inc.

Travis Burnside, P. Eng.

H:\Wilson\03710 - Eco Park Drive Industrial Site\Reports\FSR\2022-06-03 Eco Parkway FSR 03710.docx

8

Appendix A

DRAWINGS

FUNCTIONAL SERVICING REPORT

ECO PARKWAY INDUSTRIAL SITE

TOWNSHIP OF SOUTHGATE

PLAN GS75655E (SUBJECT TO EASEMENT)

			LEGEND		
	 SUBDIVISION BOUNDARY PROPOSED RIGHT OF WAY PROPOSED PROPERTY LINES EDGE OF EXISTING PAVEMENT PROPOSED SANITARY SEWER EXISTING SANITARY SEWER PROPOSED STORM SEWER 	SANMH STMMH STMMH CBMH TICBMH TICB	LEGEND EXISTING SANITARY MANHOLE PROPOSED STORM MANHOLE EXISTING STORM MANHOLE PROPOSED CATCHBASIN MANHOLE PROPOSED TWIN INLET CATCHBASIN MANHOLE PROPOSED TWIN INLET CATCHBASIN PROPOSED CATCH BASIN	M^{WV} M	EXISTING GATE V/ PROPOSED CAP C PROPOSED BLOW EXISTING HYDRO F EXISTING HYDRO F EXISTING CABLE T EXISTING TELEPH
	 EXISTING STORM SEWER PROPOSED SUBDRAIN PROPOSED WATERMAIN EXISTING WATERMAIN PROPOSED SANITARY SERVICE EXISTING SANITARY SERVICE 	 CB DICB CO CO CSV CSV 	EXISTING CATCH BASIN PROPOSED DITCH INLET CATCHBASIN PROPOSED SANITARY SERVICE CLEANOUT EXISTING SANITARY SERVICE CLEANOUT PROPOSED CURB STOP VALVE EXISTING CURB STOP VALVE		STANDARD IRON E IRON BAR BENCHMARK DROP CURB
SANMH	PROPOSED WATER SERVICE PROPOSED STORM SERVICE PROPOSED SANITARY MANHOLE	-\$-	PROPOSED HYDRANT SET EXISTING FIRE HYDRANT		

			LEGEND
	 SUBDIVISION BOUNDARY PROPOSED RIGHT OF WAY PROPOSED PROPERTY LINES EDGE OF EXISTING PAVEMENT PROPOSED SANITARY SEWER EXISTING SANITARY SEWER PROPOSED STORM SEWER PROPOSED SUBDRAIN PROPOSED WATERMAIN EXISTING WATERMAIN PROPOSED SANITARY SERVICE EXISTING SANITARY SERVICE EXISTING SANITARY SERVICE 	SAAMH STMMH STMMH CBMH TICBMH TICB CB CB CB CB CB CB CC CC CC CC CC CC C	EXISTING SANITARY MANHOLE PROPOSED STORM MANHOLE EXISTING STORM MANHOLE PROPOSED CATCHBASIN MANHOLE PROPOSED TWIN INLET CATCHBASIN MANHOLE PROPOSED TWIN INLET CATCHBASIN PROPOSED CATCH BASIN EXISTING CATCH BASIN PROPOSED DITCH INLET CATCHBASIN PROPOSED DITCH INLET CATCHBASIN PROPOSED SANITARY SERVICE CLEANOUT EXISTING SANITARY SERVICE CLEANOUT PROPOSED CURB STOP VALVE
SANMH	PROPOSED STORM SERVICE		EXISTING FIRE HYDRANT
			PROPOSED GATE VALVE

EXISTING GATE VALVE PROPOSED CAP C/W THRUST BLOCK PROPOSED BLOWOFF EXISTING HYDRO GUY WIRE EXISTING HYDRO POLE EXISTING CABLE TV PEDESTAL EXISTING TELEPHONE PEDESTAL STANDARD IRON BAR IRON BAR BENCHMARK DROP CURB •

•

)—___

 O^{HF}

 \Box^{CATV}

 \Box^{BPED}

 \Box^{SB}

COPYRIGHT C COBIDE ENGINEERING INC.

Appendix B

MODEL PARAMETERS AND OUTPUT STORMWATER MANAGEMENT REPORT ECO PARKWAY INDUSTRIAL SITE TOWNSHIP OF SOUTHGATE

Table A.1 Parameter Summary Table

Existing Conditions									
Outlet Location	Model Catchment ID	Description	Area (ha)	Drainage Channel (m)	Flow Length (m)	Gradient (%)	Total Imperv. Connected (%)	Manning's 'n' (Perv.)	CN (Perv.)
	101	Pre Development Site - Front Portion	3.12	390	80	2.0	0.0	0.30	72.0
	102	Pre Development Site - Back Portion	1.35	120	113	2.0	0.0	0.30	72.0
	201	Post Development Site - Front Portion	3.12	600	52	2.0	16.7	0.25	77.0
	202	Post Development Site - Back Portion	1.35	120	56	2.0	0.0	0.30	72.0

Table A.2 Site Soils: (as per Ontario Soil Survey Report for Grey County)

Soil Type Listowel Silt Loam

Hydologic Soil Group BC

		TABLE	E OF CURVE N	IUMBERS	(CN's)									
Land Use			Hydr	ologic Soil	Туре									
	A	A AB B BC C CD D Manning's 'n'												
Meadow	50	54	58	64.5	71	74.5	78	0.4	continuous grass					
Woodlot	50	55.3	60.5	67	73.5	76.8	80	0.4	forests					
Long Grass	55	60	65	72	79	81.5	84	0.3	natural, not maintained					
Lawns	60	65.5	71	77	83	86	89	0.25	maintained					
Pasture/Range	58	61.5	65	70.5	76	78.5	81	0.17	farm pasture					
Crop	66	70	74	78	82	84	86	0.13	farm land					
Fallow (bare)	77	82	86	89	91	93	94	0.05	idle farm land (bare)					
Built-up	60	65.5	71	77	83	89	89	0.25	Lawns Existing					
Streets, paved	98	98	98	98	98	98	98	0.01						

	HYDROLOGIC SOIL TYPE (%) - Existing Conditions												
Catabraant	Hydrologic Soil Type												
Catchment	A	A AB B BC C CD D TOTAL											
101	0	0	0	100	0	0	0	100					
102	0	0	0	100	0	0	0	100					
201	0	0	0	100	0	0	0	100					
202	0	0	0	100	0	0	0	100					

	LAND USE (%) - Existing Conditions													
Catchment	Meadow	Woodlot	Long Grass	Lawns	Pasture Range	Crop	Fallow (Bare)	Imperv. Not Connected (Rooftops)	oerv. Not nnected coftops)					
101	0	0.0	100.0	0	0	0.0	0	0.0	0.0	100				
102	0	0	100	0.0	0	0	0	0.0	0.0	100				
201	0	0	0	83	0	0	0	0.0	16.7	100				
202	0	0	100	0	0	0	0	0.0	0.0	100				

	CURVE NUMBER (CN) - Existing Conditions													
Catchment	Meadow	Woodlot	Long Grass	Lawns	Pasture Range	Pasture Range Crop Fallow (Bare) Built-up Imperv. Not Weig Connected CN (Rooftops) Perv		Weighted CN - Pervious	Manning's 'n'					
101	65	67	72	77	70.5	78	89	77	90	72.0	0.30			
102	65	67	72	77	70.5	78	89	77	90	72.0	0.30			
201	65	67	72	77	70.5	78	89	77	90	77.0	0.25			
202	65	67	72	77	70.5	78	89	77	90	72.0	0.30			

Table A.3: Impervious Area Determination for Subcatchment 101

Existing Condit	tions					
Area of Concern	Total Area (ha)	Impervic Conn	ous Area ected	Impervi Not Connec	Total (%)	
101	3.12	(ha) 0.00	(%) 0.0	(ha) 0.00	(%) 0.0	0.0
102	1.35	0.00	0.0	0.00	0.0	0.0
201	3.12	0.52	16.7	0.00	0.0	16.7
202	1.35	0.00	0.0	0.00	0.0	0.0

Table A.3 - Im	pervi	ous Area Determinati	on for Existi	ng Catchments 101		
Catchment					Imperv. Area	Imperv %
101	0	m of	20	m wide ROW @ 45% imperv.	0.00 ha	0.0 %
	0	Impervious Area	720	m ² @ 100% imperv.	0.00 ha	0.0 %
	0	Roof Area	100	m ² @ 100% imperv.	0.00 ha	0.0 %
					0.00 ha	
102	0	m of	20	m wide ROW @ 45% imperv.	0.00 ha	0.0 %
	0	Impervious Area	24927	m ² @ 100% imperv.	0.00 ha	0.0 %
	0	Permanent Pool	3060	m ² @ 100% imperv.	0.00 ha	0.0 %
	0	Roof Area	11540	m ² @ 100% imperv.	0.00 ha	0.0 %
					0.00 ha	
201	0	m of	20	m wide ROW @ 45% imperv.	0.00 ha	0.0 %
	1	Impervious Area	5220	m ² @ 100% imperv.	0.52 ha	16.7 %
	1	Permanent Pool	965	m ² @ 100% imperv.	0.10 ha	3.1 %
	1	Roof Area	0	m ² @ 100% imperv.	0.00 ha	0.0 %
					0.62 ha	
202	0	m of	20	m wide ROW @ 45% imperv.	0.00 ha	0.0 %
	0	Impervious Area	220	m ² @ 100% imperv.	0.00 ha	0.0 %
	0	Roof Area	250	m ² @ 100% imperv.	0.00 ha	0.0 %
					0.00 ha	

ECO PARK WAY SITE PLAN - MODEL SCHEMATIC

ECOPARK WAY SITE PLAN – MODEL DETAILS

[TITLE]	
;;Project	Title/Notes

[OPTIONS]													
;;Option	Value												
FLOW_UNITS	LPS												
INFILTRATION	HORTON	N											
FLOW_ROUTING	DYNWA	VE 											
LINK_OFFSETS	ELEVA'	I'ION											
MIN_SLOPE	U												
ALLOW_PONDING	NO E NO												
SKIP_SIEADI_SIAI.	e no												
פייאסיי הסגיים	5/25/2	2022											
START_DATE	00.00	• 0 0											
BEDUBL CLABL DAL.	E 5/25/3	2022											
REPORT START TIM	E 00:00	:00											
END DATE	5/26/2	2022											
END TIME	00:00	:00											
SWEEP START	1/1												
SWEEP END	12/31												
DRY DAYS	0												
REPORT_STEP	00:01:	:00											
WET_STEP	00:05	:00											
DRY_STEP	00:05	:00											
ROUTING_STEP	5												
RULE_STEP	00:00:	:00											
INERTIAL_DAMPING	PARTI	AL											
NORMAL_FLOW_LIMI	TED BOTH												
FORCE_MAIN_EQUAT	ION H-W												
VARIABLE_STEP	0.75												
LENGTHENING_STEP	0												
MIN_SURFAREA	U												
MAA_TRIALS	8												
READ_IOLERANCE	5												
INT FION TOL	5												
MINIMIM STED	0 5												
THREADS	8												
THREADS	0												
[EVAPORATION]													
;;Data Source	Parameters	5											
;;													
CONSTANT	0.0												
DRY ONLY	NO												
-													
[RAINGAGES]													
;;Name	Format	Interv	al SC	F	Sourc	e							
;;													
Chicago_3h	INTENSITY	0:05	1.	D	TIMES	ERIES	Chicago_	3h					
Chicago_3h_100yr	INTENSITY	0:05	1.	C	TIMES	SERIES	Chicago_	3h_100	yr				
Chicago_3h_25yr	INTENSITY	0:05	1.	0	TIMES	ERIES	Chicago_	3h_25y	r				
SCS_Type_II_25mm	INTENSITY	0:06	1.	0	TIMES	SERIES	SCS_Type	_11_25	mm				
[SUBCATCHMENTS]													
;;Name	Rain Gage		Outl	et		Area	%1mp	erv W	lidth	%Slope	CurbLen	SnowPack	
;;	Gh /					1 25							
101	Chicago_3	1	OF3			1.35	0	1	.20	2	0		
201	Chicago_3	.1	OF 1			3.1Z 2.12	167	3	590	2	0		
201	Chicago_3	1 1	OF4			3.1Z 1 35	10./	0	20	2	0		
272	SILLCAYU_SI		01.4			1.00	0	T	20	4	0		
[SUBAREAS]													
;;Subcatchment	N-Imperv	N-Per	v	S-Impe	rv	S-Perv	7 Pct.	Zero	Rout	eTo Pci	Routed		
;;													
101	0.01	0.3		0.05		0.05	25		OUTL	ET			
102	0.01	0.3		0.05		0.05	25		OUTL	ET			
201	0.01	0.25		0.05		0.05	25		OUTL	ET			

ECOPARK WAY SITE PLAN – MODEL DETAILS

202	0.01	0.3	0.05	0.05	2	5	OUT	LET			
ΓτΝΕΤΤΠΟΛΠΤΟΝΙ											
··Subcatchment	Daram1	Daram?	Daram3	Daram	л т	aram5					
,,Subcatchillent	ratami			raram.	ч г						
101	72	0 5	7	0	C		CUR	VE NUMBER			
102	72	0.5	7	0	0		CUR	VE NUMBER			
201	72	0.5	7	0	0		CUR	VE_NUMBER			
202	72	0.5	7	0	0		CUID	VE_NUMBER			
202	12	0.5	,	0	U		CUR	VE_NOMBER			
[OUTFALLS]											
::Name	Elevation		Stage D	ata	Gated	Route	<u>-</u> T∩				
··											
,, ∩F1	509 1	ਸ਼ਸ਼ਸ਼			NO						
052	509.1	FDFF			NO						
053	0	FDFF			NO						
015 0F1	0	FDFF			NO						
014	0	FREE			NO						
[STORAGE]											
::Name	Elev	MaxDenth	InitDenth	Shape	Cu	rve Name	≏/Para	ms	SurD	enth Fevan	Psi
Ksat IMD	LICV.	nambepen	INTEDEPEN	bilape	00	it ve mane	c/ ruru	1110	Duid	epen revup	101
·:											
,, 											
SU1	508	2	1	TABULAR	Pc	nd			0	0	
001	300	2	±	THEOLIN	10	110			0	0	
[ORTFICES]											
::Name	From Node	» То	Node	Type		Offset	F	Ocoeff	Gated	CloseTime	
;;											
,, OR1	SU1	OF	2	SIDE		509		0 65	NO	0	
OILT	501	01	2	01DH		505		0.00	NO	0	
[XSECTIONS]											
::Link	Shape	Geoml		Geom2	Geor	3 6	Seom4	Barre	als Cu	lvert	
;;											
OR1	CIRCULAR	0.175		0	0	C	0				
OIL	OINCOLM	0.1/0		0	0		0				
[CURVES]											
;;Name	Tvpe	X-Value	Y-Value								
;;											
Pond	Storage	0	145								
Pond	j-	0.4	330								
Pond		0.5	410								
Pond		0.75	640								
Pond		1	895								
Pond		1 25	1160								
Pond		1 5	1420								
Pond		1 6	1525								
Pond		2	1790								
10110		2	1750								
[TTMESERIES]											
;;Name	Date	Time	Value								
;;											
Chicago design	storm, a =	= 541.32, b	= 0.093,	c = 0.701	, Durat	ion = 18	80 min	utes, r =	0.4, rai	n units = mm	/hr.
Chicago 3h	, ,	, .		,				· · · · ,	, .		
;Chicago design	storm, a =	= 895.37, b	= 0.029,	c = 0.7, I	Duratic	n = 180	minut	es, r = 0.	4, rain	units = mm/h	r.
Chicago 3h 100yı	<u>-</u>										
;Chicago design	storm, a =	= 737.24, b	= 0.067,	c = 0.7, I	Duratic	n = 180	minut	es, r = 0.	4, rain	units = mm/h	r.
Chicago 3h 25yr											
;SCS Type II 25m	nm design s	storm, tota	l rainfall	= 25 mm,	rain i	nterval	= 6 m	inutes, ra	in units	= mm/hr.	
SCS_Type_II_25mm	n										
[REPORT]											
;;Reporting Opti	ons										
INPUT YES											
CONTROLS NO											
SUBCATCHMENTS AT	L										
NODES ALL											

ECOPARK WAY SITE PLAN – MODEL DETAILS

LINKS ALL

[TAGS]

[MAP]
 DIMENSIONS
 548709.3262
 4889582.2144
 549762.9458
 4889725.9536

 UNITS
 Meters

ECOPARK WAY SITE PLAN – 5 YEAR DESIGN STORM EVENT

EPA STORM WATER MANAGEMENT MODEL - VERSION 5.2 (Build 5.2.4)

* * * * * * * * * * * * * * * *

Raingage Summary

Name	Data Source	Data Type	Recording Interval
Chicago_3h	Chicago_3h	INTENSITY	5 min.
Chicago_3h_100yr	Chicago_3h_100yr	INTENSITY	5 min.
Chicago_3h_25yr	Chicago_3h_25yr	INTENSITY	5 min.
SCS_Type_II_25mm	SCS_Type_II_25mm	INTENSITY	6 min.

Subcatchment Summary

*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*

Name	Area	Width	%Imperv	%Slope Rain Gage	Outlet
101	1.35	120.00	0.00	2.0000 Chicago_3h	OF3
102	3.12	390.00	0.00	2.0000 Chicago_3h	OF1
201	3.12	600.00	16.70	2.0000 Chicago_3h	SU1
202	1.35	120.00	0.00	2.0000 Chicago_3h	OF4

* * * * * * * * * * * *

Node Summary

* * * * * * * * * * * *

Name	Туре	Invert Elev.	Max. Depth	Ponded Area	External Inflow
OF1	OUTFALL	509.10	0.00	0.0	
OF2	OUTFALL	509.00	0.00	0.0	
OF3	OUTFALL	0.00	0.00	0.0	
OF4	OUTFALL	0.00	0.00	0.0	
SU1	STORAGE	508.00	2.00	0.0	

* * * * * * * * * * * *

Link Summary

* * * * * * * * * * *					
Name	From Node	To Node	Туре	Length	%Slope Roughness
OR1	SU1	OF2	ORIFICE		

Cross Section Summary

		Full	Full	Hyd.	Max.	No. of	Full	
Conduit	Shape	Depth	Area	Rad.	Width	Barrels	Flow	

Analysis Options		
	TDO	
Process Models.	LF2	
Painfall/Punoff	VEC	
	NO	
Snowmelt	NO	
Groundwater	NO	
Flow Bouting	YES	
Ponding Allowed	NO	
Water Quality	NO	
Infiltration Method	HORTON	
Flow Bouting Method	DYNWAVE	
Surcharge Method	EXTRAN	
Starting Date	05/25/2022 00:	00:00
Ending Date	05/26/2022 00:	00:00
Antecedent Drv Davs	0.0	
Report Time Step	00:01:00	
Wet Time Step	00:05:00	
Dry Time Step	00:05:00	
Routing Time Step	5.00 sec	
Variable Time Step	YES	
Maximum Trials	8	
Number of Threads	1	
Head Tolerance	0.001524 m	
* * * * * * * * * * * * * * * * * * * *	Volume	Depth
Runoff Quantity Continuity	hectare-m	mm

Total Precipitation	0.381	42.606
Evaporation Loss	0.000	0.000
Infiltration Loss	0.263	29.474
Surface Runoff	0.116	12.991
Final Storage	0.002	0.175
Continuity Error (%)	-0.080	
*******	Volume	Volume
Flow Routing Continuity	hectare-m	10^6 ltr
Wet Weather Inflow	0.000	1 161
Croundwater Inflow	0.110	1.101
PDII Inflow	0.000	0.000
External Inflow	0.000	0.000
External Outflow	0.000	1 155
Flooding Loss	0.000	0 000
Evaporation Loss	0.000	0.000
Exfiltration Loss	0.000	0.000
Initial Stored Volume	0.046	0.455
Final Stored Volume	0.046	0.462
Continuity Error (%)	0.000	
* * * * * * * * * * * * * * * * * * * *	÷	

 Convergence obtained at all time steps.

* * * * * * * * * * * * * * * * * * * *			
Routing Time Step Summary			
* * * * * * * * * * * * * * * * * * * *			
Minimum Time Step	:	4.50	sec
Average Time Step	:	5.00	sec
Maximum Time Step	:	5.00	sec
% of Time in Steady State	:	0.00	
Average Iterations per Step	:	2.00	
% of Steps Not Converging	:	0.00	
Time Step Frequencies	:		
5.000 - 3.155 sec	:	100.00	90
3.155 - 1.991 sec	:	0.00	90
1.991 - 1.256 sec	:	0.00	90
1.256 - 0.792 sec	:	0.00	00
0.792 - 0.500 sec	:	0.00	8

Subcatchment Runoff Summary

	Total	Total	Total	Total	Imperv	Perv	Total	Total
Peak Runoff								
	Precip	Runon	Evap	Infil	Runoff	Runoff	Runoff	Runoff
Runoff Coeff								
Subcatchment	mm	mm	mm	mm	mm	mm	mm	10^6 ltr
LPS								
101	42.61	0.00	0.00	32.94	0.00	9.43	9.43	0.13
15.27 0.221								
102	42.61	0.00	0.00	32.23	0.00	10.21	10.21	0.32
43.35 0.240								
201	42.61	0.00	0.00	23.72	7.12	11.74	18.86	0.59
317.45 0.443								
202	42.61	0.00	0.00	32.94	0.00	9.43	9.43	0.13
15.27 0.221								

Node	Туре	Average Depth Meters	Maximum Depth Meters	Maximum HGL Meters	Time Occu days	of Max arrence hr:min	Reported Max Depth Meters
OF1	OUTFALL	0.00	0.00	509.10	0	00:00	0.00
OF2	OUTFALL	0.00	0.00	509.00	0	00:00	0.00
OF3	OUTFALL	0.00	0.00	0.00	0	00:00	0.00
OF4	OUTFALL	0.00	0.00	0.00	0	00:00	0.00
SU1	STORAGE	1.07	1.32	509.32	0	02:51	1.32

Node Inflow Summary

* * * * * * * * * * * * * * * * * * *

Maximum	Maximum		Lateral	Total	Flow
Lateral	Total	Time of Max	Inflow	Inflow	Balance
Inflow	Inflow	Occurrence	Volume	Volume	Error

ECOPARK WAY SITE PLAN - 5 YEAR DESIGN STORM EVENT

Node	Туре	LPS	LPS	days	hr:min	10^6 ltr	10^6 ltr	Percent
OF1	OUTFALL	43.35	43.35	0	01:40	0.318	0.318	0.000
OF2	OUTFALL	0.00	33.38	0	02:51	0	0.582	0.000
OF3	OUTFALL	15.27	15.27	0	01:50	0.127	0.127	0.000
OF4	OUTFALL	15.27	15.27	0	01:50	0.127	0.127	0.000
SU1	STORAGE	317.45	317.45	0	01:15	0.589	1.04	0.000

Node Surcharge Summary

No nodes were surcharged.

No nodes were flooded.

Storage Volume Summary

Storage Unit	Average	Avg	Evap	Exfil	Maximum	Max	Time of Max	Maximum
	Volume	Pcnt	Pcnt	Pcnt	Volume	Pcnt	Occurrence	Outflow
	1000 m³	Full	Loss	Loss	1000 m³	Full	days hr:min	LPS
 SU1	0.527	28.6	0.0	0.0	0.795	43.1	0 02:51	33.38

Outfall Loading Summary

Outfall Node	Flow	Avg	Max	Total
	Freq	Flow	Flow	Volume
	Pcnt	LPS	LPS	10^6 ltr
OF1	97.22	3.79	43.35	0.318
OF2	99.40	6.77	33.38	0.582
OF3	96.71	1.52	15.27	0.127
OF4	96.71	1.52	15.27	0.127
System	97.51	13.61	102.95	1.155

Link Flow Summary

		Maximum	Time of Max	Maximum	Max/	Max/
		Flow	Occurrence	Veloc	Full	Full
Link	Туре	LPS	days hr:min	m/sec	Flow	Depth
OR1	ORIFICE	33.38	0 02:51			1.00

ECOPARK WAY SITE PLAN - 5 YEAR DESIGN STORM EVENT

	Adjusted			Fract	ion of	Time :	in Flow	v Class	3	
	/Actual		Up	Down	Sub	Sup	Up	Down	Norm	Inlet
Conduit	Length	Dry	Dry	Dry	Crit	Crit	Crit	Crit	Ltd	Ctrl

No conduits were surcharged.

Analysis begun on: Wed Mar 5 15:09:05 2025 Analysis ended on: Wed Mar 5 15:09:06 2025 Total elapsed time: 00:00:01

ECOPARK WAY SITE PLAN - 25 YEAR DESIGN STORM EVENT

EPA STORM WATER MANAGEMENT MODEL - VERSION 5.2 (Build 5.2.4)

* * * * * * * * * * * * * * * *

Raingage Summary

Name	Data Source	Data Type	Recording Interval
Chicago_3h	Chicago_3h	INTENSITY	5 min.
Chicago_3h_100yr	Chicago_3h_100yr	INTENSITY	5 min.
Chicago_3h_25yr	Chicago_3h_25yr	INTENSITY	5 min.
SCS_Type_II_25mm	SCS_Type_II_25mm	INTENSITY	6 min.

Subcatchment Summary

* * * * * * * * * * * * * * * * * * *						
Name	Area	Width	%Imperv	%Slope Rain Gage	Outlet	
101	1.35	120.00	0.00	2.0000 Chicago 3h 25yr	OF3	
102	3.12	390.00	0.00	2.0000 Chicago 3h 25yr	OF1	
201	3.12	600.00	16.70	2.0000 Chicago 3h 25yr	SU1	
202	1.35	120.00	0.00	2.0000 Chicago_3h_25yr	OF4	

* * * * * * * * * * * *

Node Summary

* * * * * * * * * * * *

Name	Туре	Invert Elev.	Max. Depth	Ponded Area	External Inflow
OF1	OUTFALL	509.10	0.00	0.0	
OF2	OUTFALL	509.00	0.00	0.0	
OF3	OUTFALL	0.00	0.00	0.0	
OF4	OUTFALL	0.00	0.00	0.0	
SU1	STORAGE	508.00	2.00	0.0	

* * * * * * * * * * * *

Link Summary

Name	From Node	To Node	Туре	Length	%Slope Roughness
OR1	SU1	OF2	ORIFICE		

Cross Section Summary

* * * * * * * * * * * * * * * * * * *								
		Full	Full	Hyd.	Max.	No. of	Full	
Conduit	Shape	Depth	Area	Rad.	Width	Barrels	Flow	

Analysis Options		
	TDC	
Process Models.	LE S	
Rainfall/Runoff	YES	
RDII	NO	
Snowmelt	NO	
Groundwater	NO	
Flow Routing	YES	
Ponding Allowed	NO	
Water Quality	NO	
Infiltration Method	HORTON	
Flow Routing Method	DYNWAVE	
Surcharge Method	EXTRAN	
Starting Date	05/25/2022 00:00:0	0
Ending Date	05/26/2022 00:00:0	0
Antecedent Dry Days	0.0	
Report Time Step	00:01:00	
Wet Time Step	00:05:00	
Pouting Time Step	5 00 800	
Variable Time Step	YES	
Maximum Trials	8	
Number of Threads	1	
Head Tolerance	0.001524 m	
* * * * * * * * * * * * * * * * * * * *	Volume	Denth
Runoff Quantity Continuity	hectare-m	mm

Total Precipitation	0.522	58.334
Evaporation Loss	0.000	0.000
Infiltration Loss	0.324	36.217
Surface Runoff	0.197	22.012
Final Storage	0.002	0.177
Continuity Error (%)	-0.124	
*******************	Volume	Volume
Flow Routing Continuity	hectare-m	10^6 ltr
Dry Weather Inflow	0.000	0.000
Wet Weather Inflow	0.197	1.968
Groundwater Inflow	0.000	0.000
RDII Inflow	0.000	0.000
External Inflow	0.000	0.000
External Outflow	0.196	1.960
Flooding Loss	0.000	0.000
Evaporation Loss	0.000	0.000
Exfiltration Loss	0.000	0.000
Initial Stored Volume	0.046	0.455
Final Stored Volume	0.046	0.463
Continuity Filor (%)	0.000	
***************************************	*	

 Convergence obtained at all time steps.

* * * * * * * * * * * * * * * * * * * *			
Routing Time Step Summary			
* * * * * * * * * * * * * * * * * * * *			
Minimum Time Step	:	4.50	sec
Average Time Step	:	5.00	sec
Maximum Time Step	:	5.00	sec
% of Time in Steady State	:	0.00	
Average Iterations per Step	:	2.00	
% of Steps Not Converging	:	0.00	
Time Step Frequencies	:		
5.000 - 3.155 sec	:	100.00	8
3.155 - 1.991 sec	:	0.00	8
1.991 - 1.256 sec	:	0.00	8
1.256 - 0.792 sec	:	0.00	olo
0.792 - 0.500 sec	:	0.00	90

Subcatchment Runoff Summary

	Total	Total	Total	Total	Imperv	Perv	Total	Total
Peak Runoff								
	Precip	Runon	Evap	Infil	Runoff	Runoff	Runoff	Runoff
Runoff Coeff								
Subcatchment	mm	mm	mm	mm	mm	mm	mm	10^6 ltr
LPS								
1.01	E0 22	0 00	0 00	40 70	0 00	17 20	17 20	0.22
22.26 0.207	20.33	0.00	0.00	40.79	0.00	11.52	11.32	0.23
102	E0 22	0 00	0 00	20 01	0 00	10 20	10 20	0 57
102 02 07 0 315	20.33	0.00	0.00	39.01	0.00	10.30	10.30	0.57
201	58 33	0 00	0 00	28 66	9 75	19 96	29 71	0 93
499 46 0 509	50.55	0.00	0.00	20.00	5.15	10.00	23.11	0.95
202	58.33	0.00	0.00	40.79	0.00	17.32	17.32	0.23
32.36 0.297								

Туре	Average Depth Meters	Maximum Depth Meters	Maximum HGL Meters	Time Occu days	of Max arrence hr:min	Reported Max Depth Meters
OUTFALL	0.00	0.00	509.10	0	00:00	0.00
OUTFALL	0.00	0.00	509.00	0	00:00	0.00
OUTFALL	0.00	0.00	0.00	0	00:00	0.00
OUTFALL	0.00	0.00	0.00	0	00:00	0.00
STORAGE	1.12	1.51	509.51	0	03:00	1.51
	Type OUTFALL OUTFALL OUTFALL OUTFALL STORAGE	Average Depth Type Meters OUTFALL 0.00 OUTFALL 0.00 OUTFALL 0.00 OUTFALL 0.00 OUTFALL 0.00 STORAGE 1.12	AverageMaximum DepthTypeMetersMetersOUTFALL0.000.00OUTFALL0.000.00OUTFALL0.000.00OUTFALL0.000.00OUTFALL0.000.00STORAGE1.121.51	Average Maximum Maximum Depth Depth HGL Type Meters Meters Meters OUTFALL 0.00 0.00 509.10 OUTFALL 0.00 0.00 509.00 OUTFALL 0.00 0.00 0.00 OUTFALL 0.00 0.00 0.00 OUTFALL 0.00 0.00 0.00 OUTFALL 0.00 0.00 0.00 STORAGE 1.12 1.51 509.51	Average Maximum Maximum Time Depth Depth Depth HGL Occu Type Meters Meters Meters days OUTFALL 0.00 0.00 509.10 0 OUTFALL 0.00 0.00 509.00 0 OUTFALL 0.00 0.00 0.00 0 OUTFALL 0.00 0.00 0.00 0 OUTFALL 0.00 0.00 0.00 0 STORAGE 1.12 1.51 509.51 0	Average Maximum Maximum Time of Max Depth Depth HGL Occurrence Type Meters Meters Meters days hr:min OUTFALL 0.00 0.00 509.10 0 00:00 OUTFALL 0.00 0.00 509.00 0 00:00 OUTFALL 0.00 0.00 509.00 0 00:00 OUTFALL 0.00 0.00 0.00 0 00:00 STORAGE 1.12 1.51 509.51 0 03:00

*

Node Inflow Summary

* * * * * * * * * * * * * * * * * * *

Maximum	Maximum		Lateral	Total	Flow
Lateral	Total	Time of Max	Inflow	Inflow	Balance
Inflow	Inflow	Occurrence	Volume	Volume	Error

ECOPARK WAY SITE PLAN - 25 YEAR DESIGN STORM EVENT

Node	Туре	LPS	LPS	days	hr:min	10^6 ltr	10^6 ltr	Percent
OF1	OUTFALL	92.87	92.87	0	01:30	0.573	0.573	0.000
OF2	OUTFALL	0.00	44.87	0	03:00	0	0.919	0.000
OF3	OUTFALL	32.36	32.36	0	01:35	0.234	0.234	0.000
OF4	OUTFALL	32.36	32.36	0	01:35	0.234	0.234	0.000
SU1	STORAGE	499.46	499.46	0	01:15	0.927	1.38	0.000

Node Surcharge Summary

No nodes were surcharged.

No nodes were flooded.

Storage Volume Summary

Storage Unit	Average	Avg	Evap	Exfil	Maximum	Max	Time of Max	Maximum
	Volume	Pcnt	Pcnt	Pcnt	Volume	Pcnt	Occurrence	Outflow
	1000 m³	Full	Loss	Loss	1000 m³	Full	days hr:min	LPS
SU1	0.579	31.4	0.0	0.0	1.045	56.6	0 03:00	44.87

Outfall Loading Summary

Outfall Node	Flow	Avg	Max	Total
	Freq	Flow	Flow	Volume
	Pcnt	LPS	LPS	10^6 ltr
OF1	97.84	6.78	92.87	0.573
OF2	99.53	10.69	44.87	0.919
OF3	97.37	2.78	32.36	0.234
OF4	97.37	2.78	32.36	0.234
System	98.03	23.03	193.24	1.960

Link Flow Summary

		Maximum	Time of Max	Maximum	Max/	Max/
		Flow	Occurrence	Veloc	Full	Full
Link	Туре	LPS	days hr:min	m/sec	Flow	Depth
						1 0 0
ORI	ORIFICE	44.8/	0 03:00			1.00

ECOPARK WAY SITE PLAN - 25 YEAR DESIGN STORM EVENT

	Adjusted			Fract	ion of	Time :	in Flow	v Class	3	
	/Actual		Up	Down	Sub	Sup	Up	Down	Norm	Inlet
Conduit	Length	Dry	Dry	Dry	Crit	Crit	Crit	Crit	Ltd	Ctrl

No conduits were surcharged.

Analysis begun on: Wed Mar 5 15:08:26 2025 Analysis ended on: Wed Mar 5 15:08:26 2025 Total elapsed time: < 1 sec

ECOPARK WAY SITE PLAN - 100 YEAR DESIGN STORM EVENT

EPA STORM WATER MANAGEMENT MODEL - VERSION 5.2 (Build 5.2.4)

* * * * * * * * * * * * * * * *

Raingage Summary

Name	Data Source	Data Type	Recording Interval
Chicago_3h	Chicago_3h	INTENSITY	5 min.
Chicago_3h_100yr	Chicago_3h_100yr	INTENSITY	5 min.
Chicago_3h_25yr	Chicago_3h_25yr	INTENSITY	5 min.
SCS_Type_II_25mm	SCS_Type_II_25mm	INTENSITY	6 min.

Subcatchment Summary

k	: *	77	۲.	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*

Name	Area	Width	%Imperv	%Slope Rain Gage	Outlet
101	1.35	120.00	0.00	2.0000 Chicago_3h_100yr	OF3
102	3.12	390.00	0.00	2.0000 Chicago_3h_100yr	OF1
201	3.12	600.00	16.70	2.0000 Chicago_3h_100yr	SU1
202	1.35	120.00	0.00	2.0000 Chicago_3h_100yr	OF4

* * * * * * * * * * * *

Node Summary

* * * * * * * * * * * *

Name	Туре	Invert Elev.	Max. Depth	Ponded Area	External Inflow
OF1	OUTFALL	509.10	0.00	0.0	
OF2	OUTFALL	509.00	0.00	0.0	
OF3	OUTFALL	0.00	0.00	0.0	
OF4	OUTFALL	0.00	0.00	0.0	
SU1	STORAGE	508.00	2.00	0.0	

* * * * * * * * * * * *

Link Summary

* * * * * * * * * * * *					
Name	From Node	To Node	Туре	Length	%Slope Roughness
OR1	SU1	OF2	ORIFICE		

Cross Section Summary

< * * * * * * * * * * * * * * * * * * *								
		Full	Full	Hyd.	Max.	No. of	Full	
Conduit	Shape	Depth	Area	Rad.	Width	Barrels	Flow	

Analysis Options		
	1.50	
Process Models:	Th2	
Rainfall/Runoff	VES	
RDTT	NO	
Snowmelt	NO	
Groundwater	NO	
Flow Routing	YES	
Ponding Allowed	NO	
Water Quality	NO	
Infiltration Method	HORTON	
Flow Routing Method \ldots	DYNWAVE	
Surcharge Method	EXTRAN	
Starting Date	05/25/2022 00:00:00	
Ending Date	05/26/2022 00:00:00	
Antecedent Dry Days	0.0	
Report Time Step	00:01:00	
Wet Time Step	00:05:00	
Dry Time Step	00:05:00	
Routing Time Step	5.UU SEC	
Maximum Triale	0	
Number of Threads	1	
Head Tolerance	1 0 001524 m	
	0.001021	
* * * * * * * * * * * * * * * * * * * *	Volume	Denth
Runoff Quantity Continuity	hectare-m	mm

Total Precipitation	0.633	70.857
Evaporation Loss	0.000	0.000
Infiltration Loss	0.364	40.683
Surface Runoff	0.269	30.114
Final Storage	0.002	0.175
Continuity Error (%)	-0.164	
* * * * * * * * * * * * * * * * * * * *	Volume	Volume
Flow Routing Continuity	hectare-m	10^6 ltr
Wet Weather Inflow	0.000	0.000
Croundwater Inflow	0.289	2.092
BDIT Inflow	0.000	0.000
External Inflow	0.000	0.000
External Outflow	0.268	2.684
Flooding Loss	0.000	0.000
Evaporation Loss	0.000	0.000
Exfiltration Loss	0.000	0.000
Initial Stored Volume	0.046	0.455
Final Stored Volume	0.046	0.464
Continuity Error (%)	0.000	
* * * * * * * * * * * * * * * * * * * *	*	

Time-Step Critical Elements

 Convergence obtained at all time steps.

* * * * * * * * * * * * * * * * * * * *			
Routing Time Step Summary			
* * * * * * * * * * * * * * * * * * * *			
Minimum Time Step	:	4.50	sec
Average Time Step	:	5.00	sec
Maximum Time Step	:	5.00	sec
% of Time in Steady State	:	0.00	
Average Iterations per Step	:	2.00	
% of Steps Not Converging	:	0.00	
Time Step Frequencies	:		
5.000 - 3.155 sec	:	100.00	90
3.155 - 1.991 sec	:	0.00	90
1.991 - 1.256 sec	:	0.00	90
1.256 - 0.792 sec	:	0.00	90
0.792 - 0.500 sec	:	0.00	90

Subcatchment Runoff Summary

Deak Punoff	Total	Total	Total	Total	Imperv	Perv	Total	Total
Ieak Runorr	Precip	Runon	Evap	Infil	Runoff	Runoff	Runoff	Runoff
Runoff Coeff								
Subcatchment	mm	mm	mm	mm	mm	mm	mm	10^6 ltr
LPS								
101	70.86	0.00	0.00	45.96	0.00	24.70	24.70	0.33
51.23 0.349								
102	70.86	0.00	0.00	44.94	0.00	25.82	25.82	0.81
147.78 0.364								
201	70.86	0.00	0.00	31.86	11.84	27.25	39.10	1.22
677.39 0.552								
202	70.86	0.00	0.00	45.96	0.00	24.70	24.70	0.33
51.23 0.349								

* * * * * * * * * * * * * * * * * *

Node	Туре	Average Depth Meters	Maximum Depth Meters	Maximum HGL Meters	Time Occu days	of Max urrence hr:min	Reported Max Depth Meters
OF1	OUTFALL	0.00	0.00	509.10	0	00:00	0.00
OF2	OUTFALL	0.00	0.00	509.00	0	00:00	0.00
OF3	OUTFALL	0.00	0.00	0.00	0	00:00	0.00
OF4	OUTFALL	0.00	0.00	0.00	0	00:00	0.00
SU1	STORAGE	1.16	1.66	509.66	0	03:01	1.66

Node Inflow Summary

* * * * * * * * * * * * * * * * * * *

Maximum	Maximum		Lateral	Total	Flow
Lateral	Total	Time of Max	Inflow	Inflow	Balance
Inflow	Inflow	Occurrence	Volume	Volume	Error

ECOPARK WAY SITE PLAN - 100 YEAR DESIGN STORM EVENT

Node	Туре	LPS	LPS	days	hr:min	10^6 ltr	10^6 ltr	Percent
OF1	OUTFALL	147.78	147.78	0	01:25	0.805	0.805	0.000
OF2	OUTFALL	0.00	52.50	0	03:01	0	1.21	0.000
OF3	OUTFALL	51.23	51.23	0	01:30	0.333	0.333	0.000
OF4	OUTFALL	51.23	51.23	0	01:30	0.333	0.333	0.000
SU1	STORAGE	677.39	677.39	0	01:15	1.22	1.67	0.000

Node Surcharge Summary

No nodes were surcharged.

No nodes were flooded.

Storage Volume Summary

Storage Unit	Average	Avg	Evap	Exfil	Maximum	Max	Time of Max	Maximum
	Volume	Pcnt	Pcnt	Pcnt	Volume	Pcnt	Occurrence	Outflow
	1000 m³	Full	Loss	Loss	1000 m³	Full	days hr:min	LPS
SU1	0.636	34.5	0.0	0.0	1.278	69.3	0 03:01	52.50

Outfall Loading Summary

Outfall Node	Flow	Avg	Max	Total
	Freq	Flow	Flow	Volume
	Pcnt	LPS	LPS	10^6 ltr
OF1	98.17	9.50	147.78	0.805
OF2	99.58	14.08	52.50	1.211
OF3	97.74	3.95	51.23	0.333
OF4	97.74	3.95	51.23	0.333
System	98.30	31.47	289.78	2.684

Link Flow Summary

		Maximum	Time of Max	Maximum	Max/	Max/
		Flow	Occurrence	Veloc	Full	Full
Link	Туре	LPS	days hr:min	m/sec	Flow	Depth
OR1	ORIFICE	52.50	0 03:01			1.00

ECOPARK WAY SITE PLAN - 100 YEAR DESIGN STORM EVENT

	Adjusted	I		Fracti	on of	Time i	fime in Flow Class			
	/Actual		Up	Down	Sub	Sup	Up	Down	Norm	Inlet
Conduit	Length	Dry	Dry	Dry	Crit	Crit	Crit	Crit	Ltd	Ctrl

No conduits were surcharged.

Analysi	is	begun	on:	Τu	le	Mar	4	21:03:09	2025
Analysi	is	ended	on:	Τu	le	Mar	4	21:03:09	2025
Total e	ela	psed	time:	<	1	sec			